

ALDES Core Application Note

Rev. [6/2012] 6-19-2012

Table of Contents

General Information	.3
Features	. 3
Block Diagram	. 3
Contents	.4
Synthesizable	.4
Test Vectors	.4
Interface	.4
Implementation Data	. 5
Deliverables	.5

General Information

The ALDES core is the VHDL model of the processor, that performs DES encryption and decryption. The model is fully compliant with FIPS46-2.

Features

- Fully compliant 56-bit key DES implementation
- Single DES operation
- Encryption and decryption are performed in 16 clock cycles
- Suitable for ECB, CBC, CFB and OFB implementations
- Suitable for Triple-DES implementation
- No dead clock cycles
- Simple interface and timing
- Fully synchronous design

Block Diagram

The basic structure of the ALDES core is shown below:

Rev. [6/2012] www.aldec.com

Contents

Synthesizable

See the <u>Deliverables</u> section of this document for further details.

Test Vectors

See the <u>Deliverables</u> section of this document for further details.

Interface

The pinout of the ALDES core has not been fixed to specific FPGA I/O, allowing flexibility with a user's application. Signal names are shown in the table.

Signal Name	Signal Direction	Polarity	Description	
CLK	IN	-	Clock input	
RESET	IN	HIGH	Asynchronous reset	
MODE	IN	-	Mode: 0 - encryption, 1	
			- decryption	
KEY[55:0]	IN	-	Кеу	
IN_DATA[63:0]	IN	-	Input data	
READY	IN	HIGH	Data ready signal, 1 - operate, 0 - pause in processing	
nBUSY	OUT	-	Busy signal, 0 - processor is busy, 1 - data can be loaded	
OUT_DATA[63:0]	Ουτ	-	Output data	
DATA_RDY	OUT	-	Output data ready, 1 – data on OUT_DATA are valid	

Data processing may be paused using the READY signal. If this signal is HIGH, then the processor operates. If this signal is LOW, the processor will wait and data processing will be paused.

nBUSY signal is used to indicate that the processor is busy. If set HIGH, then the input data signal IN_DATA can be changed, when set LOW, the processor will not load input data to itself.

Implementation Data

The core has been synthesized and implemented to different types of reprogrammable devices. The model has been verified using the simulation environment and tested on the real hardware.

Software								
Synthesis Tool	Synplify VHDL Compiler, version 5.1.2, built Apr 14 1999							
Implementation Tools	Xilinx Foundation™ 2.1i SP2, Altera MAX+plusII™ 9.21, Quartus™ 1.0 A							
Verification Tool	Active-HDL™ 3.5 build 437							
Hardware								
Vendor	Xilinx			Altera				
Device Family	4К	Virtex™	Spartan	FLEX™ 10K	FLEX™ 8000			
Target Device	XC4013XL-08	XC V150-6	XLC30-3	EPF10K50V-1	EPF81500-2			
Area	259CLBs	283Slices	255CLBs	656LCs	750LCs			
System Clock fmax	55MHz	104MHz	26MHz	49MHz	34MHz			

Deliverables

After you request the desired compiled synthesizable core, Aldec delivers the following files:

- Technology-dependent EDIF (ALDES.EDF) and VHDL (ALDES.VHD) netlists
- Test vectors and patterns
- User-Guide and Application Notes
- Sample designs
- Software emulator of ALDES core

Usually Aldec delivers both EDIF and VHDL netlists for customers who order the synthesizable model. The EDIF netlist is used for the place and route process and VHDL is the post-synthesis netlist used for the simulation only. Of course, both netlists are technology-dependent, because they are created after the synthesis where the customer needs to specify a vendor, target family, etc.

Software emulator of ALDES core is intended to use as «golden» source for patterns from user-provided set of data.

Aldec can provide also a set of VHDL test benches for their cores. Usually they are sold at the additional charge.

Source codes are sold on a case-by-case basis.

